Feature Subset Selection Problem using Wrapper Approach in Supervised Learning
نویسندگان
چکیده
منابع مشابه
A hybrid wrapper / filter approach for feature subset selection
This work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(...
متن کاملA New Wrapper Method for Feature Subset Selection
ANOVA decomposition is used as the basis for the development of a new wrapper feature subset selection method, in which functional networks are used as the induction algorithm. The performance of the proposed method was tested against several artificial and real data sets. The results obtained are comparable, and even better, in some cases, to those accomplished by other well-known methods, bei...
متن کاملA distributed wrapper approach for feature selection
In recent years, distributed learning has been the focus of much attention due to the proliferation of big databases, usually distributed. In this context, machine learning can take advantage of feature selection methods to deal with these datasets of high dimensionality. However, the great majority of current feature selection algorithms are designed for centralized learning. To confront the p...
متن کاملAn Effective Feature Selection Approach Using the Hybrid Filter Wrapper
Feature selection is an important data preprocessing technique and has been widely studied in data mining, machine learning and granular computing. In this paper, we introduced an effective feature selection method using the hybrid approaches, that is, use the mutual information to select the candidate feature set, then, obtain the super-reduct space from the candidate feature set by a wrapper ...
متن کاملA new wrapper feature selection approach using neural network
This paper presents a new feature selection (FS) algorithm based on the wrapper approach using neural networks (NNs). The vital aspect of this algorithm is the automatic determination of NN architectures during the FS process. Our algorithm uses a constructive approach involving correlation information in selecting features and determining NN architectures. We call this algorithm as constructiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2010
ISSN: 0975-8887
DOI: 10.5120/169-295